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Measurements are presented of both mean and fluctuating velocity components 
in a turbulent boundary layer subjected to a nearly homogeneous external 
turbulent shear flow. The Reynolds shear stress in the external shear flow is 
small compared with the wall shear stress. I ts  transverse mean velocity gradient 
h ( N 6 s-l) is also small compared with typical gradients based on outer variables 
(say U,lS, where U, is the value of the linear velocity profile extrapolated to the 
wall and 6 is the boundary-layer thickness), but is of the same order as U,/S 
(U, is the friction velocity). The influence of both positive and negative transverse 
velocity gradients on the turbulent wall layer is investigated over a streamwise 
region where the normal Reynolds stresses in the external flow are approxi- 
mately equal and constant in the streamwise direction. In  this region, the inte- 
gral length scale of the external flow is of the same order of magnitude as that of 
the wall layer. Measurements in the boundary layer are also given for an un- 
sheared external turbulent flow ( A  = 0) with a turbulence level T, of 1.5%, 
approximately the same as that for h = & 6 s-1. (T, is defined as the ratio of 
the r.m.s. longitudinal velocity fluctuation to Uw.) The measurements are in 
good agreement with those available in the literature for a similar free-stream 
turbulence level and show that the external turbulence level and length scale 
exert a large influence on the turbulence structure in the boundary layer. The 
additional effect of the external shear on the mean velocity and turbulent 
energy budget distributions in the inner region of the boundary layer is found 
to be small. In  the outer region, the ‘wake’ component of the mean velocity 
defect is lowered by the presence of free-stream turbulence and one extra effect 
due to the external shear is an increase in the Reynolds shear stress when h is 
positive and a decrease when h is negative. Another interesting effect due to the 
shear is the appearance near the edge of the layer of a small but distinct region 
where the local mean velocity is constant and the Reynolds shear stress is 
negligible. 
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1. Introduction 
The study of the interaction of an external turbulent shear flow with the flow 

near the surface of bodies and structures on the earth’s surface is of great im- 
portance. The present investigation considers the effect of a turbulent shear 
flow with a constant velocity gradient on the behaviour and structure of a turbu- 
lent boundary layer on a smooth surface. Apart from its importance to the 
atmosphere this investigation is also relevant to complex laboratory flows, such 
as the interaction between turbulent shear flows, or to turbomachinery flow, 
where the boundary layer on the rotor blade is in constant interaction with the 
external turbulent shear flow. Of more basic interest, however, is the possibility 
that the response of the boundary layer to this new outer boundary condition 
may shed further light on the turbulence structure of the layer. In  the present 
investigation the length scale of the external shear flow is of the same order as 
that of the boundary layer and, as is typical in physical systems and as was 
pointed out by Bradshaw (1974)) there is a chance that flows with comparable 
length scales will interact strongly. 

The uniform shear flow used for the present experiments was that used by 
Mulhearn & Luxton (1975) and described in detail by Mulhearn (1971). The 
stream ratet h = aU/ay = 6 s-l is a little smaller than that used by Rose (1966, 
1970)) Champagne, Harris & Corrsin (1970)) Hwang (1971) and Richards (1971) 
and significantly smaller than that used by Masuda et al. (1972), but the turbu- 
lence characteristics are well documented and suggest that there is a good 
approximation to a quasi-homogeneous shear over a useful streamwise distance. 
In  all uniform shear flows in which length scales have been measured i t  is found 
that all length scales, wit,h the possible exception of that associated with the 
shear stress, grow monotonically downstream. The characteristics of the uniform 
shear flow are briefly reviewed in $2 .  In  this paper, the term ‘boundary layer’ 
is retained in an attempt to distinguish between the external uniform shear flow 
and the shear flow in the vicinity of the wall. A definition of the boundary-layer 
thickness is given in $3.  The mean velocity and turbulence data are presented 
in $§5 and 6 respectively. The turbulence length scaIes are also discussed in $6. 

2. Characteristics of external uniform shear flow 
As there is no asymptotic state in which a truly homogeneous turbulent flow 

exists in the presence of a uniform shear, and since the large-scale structure of a 
turbulent boundary layer is known to have a long ‘memory’, it  is appropriate to 
discuss briefly the streamwise development and characteristic features of the 
present uniform shear flow and to compare these with those already reported in the 
literature. The measurements in the present uniform shear flow agree well with 
those of Mulhearn (1971), and show almost the same streamwise development. 

Previous investigations of a uniform shear flow all show that both integral 

7 It would be more useful to quote strain rates in the form h M 2 / v ,  where M is re- 
presentative of the initial length scale of the flow, but unfortunately M is either not 
recoverable from the published data or is not unique. 
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- - 
FIGURE 1. Streamwise development of Reynolds stresses. 0 ,  (u:)*/uw; A ,  (w;)*/Uw; 
v, (3 )6 /U , .  Reynolds-stress data (Mulhearn & Luxton 1970): 0, (q)*/uw; A, ($)*/Uw; 

- 
v, cq,*/uw; 0, c-qf/uw. 

length scales and Taylor microscales grow continuously in the x direction. 
Although in the present and in Mulhearn & Luxton’s (1970) investigations 
h ( N 6 s-l) is smaller than that used in other investigations, the maximum total 
mean strain (defined as xh/U,, where U, is the mean velocity a t  y / h  = 0.5, h being 
the width of the working section) which can be achieved is in excess of 7 instead 
of the previous maximum value of 3.3 (Champagne et al. 1970). In  all these 
investigations it is found that, after an initial period dominated by the decay of 
the turbulence generated by the shear-flow generating device (including the 
honeycomb), the Reynolds stresses appear to reach a constant value in the 
region of x h / Q  = 3. However the Reynolds stresses subsequently increase at  an 
increasing rate at larger total strains. Mulhearn & Luxton (1970) interpret this 
increase as a result of the reduced dissipation rate associated with the increasing 
length scales, with no compensating reduction in the production rate. Figure 1 
shows the distribution of ($)$/Uw, (q)*/U, and (2 )* /Uw for the present investi- 
gation and (q)*/Uw, - -  (2)%Uw) (w:)*/Uw and - ( q , / U w  from Mulhearn & Luxton 
(1970), where u:, v: and w: are the turbulence intensities in the X ,  y and z direc- 
tions respectively, - ( U V ) ~  is the kinematic shear stress along the centre-line of 
the tunnel and U is the ‘slip’ velocity in the x direction at the wall. These data 
indicate that u:, w: and - (ql begin to increase a t  xh/U, N 3-6 but v:, which 
is initially larger than 2) does not increase until xh/U, reaches 6.4. This appears 
reasonable as all the turbulent energy goes first into the streamwise component, 
from which it is then distributed to other components. It seems that transfer to 
the component is preferred to transfer to the 2 component as the latter is 
inhibited by the mean shear. It is worth noting that the streamwise rate of 

- 
- w- 

24-2 
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increase of u; for xAfU, > 4 is significantly larger than that for 2 and 3, possibly 
indicating that pressure fluctuations a t  the Reynolds number of these experiments 
are relatively ineffective in distributing energy. The levels attained by the Rey- 
nolds stresses in the quasi-equilibrium region of the flow are not only determined 
by initial conditions (e.g. initial length scales as suggested by Rose 1970) but 
also by the total strain to which the flow is subjected. Mulhearn & Luxton (1975) 
observed that, because of the preferential amplification of some eddy structures 
by the external shear, information about the initial conditions other that about 
the length scale is destroyed after a total strain of about 1.5. 

Support for results of Mulhearn & Luxton (1970) have been provided by Richards 
(1971), who investigated the characteristics of shear flows with both linear 
( A  = 15.6 s-1) and quadratic (dA/dy = 5 2 m-l s-1) velocity profiles with a maxi- 
mum total strain of 5.6. Richards found that ? does not begin to rise until 
xA/U, exceeds 5.6 whilst the other stresses begin to increase a t  xA/U, 21 3-1. 
However, in the flows of Mulhearn & Luxton and also Richards, the lateral 
extent of the uniformly sheared region is not sufficiently large at downstream 
locations to be absolutely sure that the rapid growth of the turbulence energy is 
not stimulated by the boundary layers on the tunnel walls. 

Lateral homogeneity of the Reynolds stresses and length scales has been 
checked by Mulhearn (1971) and found to be satisfactory for z /h  < 16. Beyond 
this station the lateral length scales in the shear flow become comparable with 
the lateral extent of the uniformly sheared region and this suggests that the 
boundary-layer inhomogeneities influence the shear flow. For the present work 
these complications have been avoided by confining the investigation of the 
boundary layer to the range 3-75 < x/h < 10, in which both streamwise and 
lateral variations of the stresses are checked experimentally and found to be 
negligible. The turbulent characteristics of the negatively sheared flow 

- 

( A  = - 6  S-') 

have been explored in detail only in the range 4 < x/h < 8 for U, = 5.8 ms-l. 

3. Boundary-layer parameters 
The mean velocity of the uniform shear flow is given by 

u, = Uw+Ay, 

where U, can be referred to as the 'slip velocity' a t  the wall. The edge of the 
boundary layer y = S is assumed to be the position where U - U, = 0.005U1. As 
this definition is somewhat arbitrary, it  is desirable to introduce more reliably 
determined integral thicknesses to characterize the boundary layer. 

The displacement thickness S* is arbitrarily defined such that 

Thus 
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In  the present experiments, the parameters A, 6 and U, are equal to 6s-l, 
0.51 m and 4.9 ms-I respectively, so that A6/U, N &. In  the experiment of 
Masuda et al. (1972)) h = 60 s-l, 6 = 0.0205 m and U, = 35 ms-l, so that 
A61Uw N gg. So, without significant loss of accuracy, 

Only when h6/U, is O( 1 )  is it necessary to use equation ( I )  for 6" 
The momentum thickness 0 can be defined by 

which leads to 

So, to the same order of accuracy as that implied by (2)) we have 

When h = 0, U, = lJl and (2) and (4) are then the usual definitions of S* and 
0 for a uniform external stream. Another suitable integral length parameter is 
A (Clauser 1954)) defined here as 

The momentum integral equation can be obtained by integrating the equation 
of motion 

from y = 0 to y = 6. The integration, when combined with (4), yields 

The second term on the left-hand side is of order (A6/UW) (&/x) whilst 

d@/dx = O ( ~ / X ) .  

A reasonable approximation to the momentum integral equation is therefore 

or (7)  

where r8 N r1 and crl ( =  2r1/Uk) can be interpreted as an effective skin-friction 
coefficient for the external stream. 
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FIGURE 2 .  Schematic layout of shear-flow generator in wind tunnel. 

4. Experimental equipment and procedure 
The open-return blower wind tunnel used for this investigation has a 9 : 1 

contraction ratio and a 7.3 m long, 45.7 cm square working section. A non- 
uniform grid shear-flow generator is inserted in a drawer at  the end of the con- 
traction and a uniform 23 cm deep x 6.4 mm hexagonal-cell aluminium honey- 
comb is placed 76-2 cm downstream from the shear-flow generator.? The main 
purpose of the honeycomb is to remove the lateral gradients in turbulence length 
scale which persist behind the non-uniform grid. The spacing of the bars in the 
grid is adjusted by trial and error to obtain a positive uniform mean shear with 
a gradient h of approximately 6 s-l downstream of the honeycomb. Another 
grid, in which the spacing between bars is exactly the reverse of that in the first 
grid (i.e. the larger spacing between the generator bars, corresponding to the 
high-speed side of the uniform shear flow, is now near the false wall), generates 
a uniform shear flow with a velocity gradient h equal to - 6 s-l. A third, empty 
drawer is inserted in place of the generator when a uniform flow with zero velocity 
gradient is required. 

A schematic diagram of the working-section arrangement is given in figure 2. 
In  the co-ordinate system used, x is the longitudinal distance measured from the 
honeycomb, y is the distance normal to the false partition and z is measured in 
the plane of the partition. The mean velocity components in the x, y and z direc- 
tions are U ,  V and W respectively whilst the corresponding velocity fluctuations 
are u, v and to. The boundary layer studied in this paper develops along the false 
partition and its virtual origin is stabilized by a 1-6 mm diameter rod situated at  
x = 23 cm. 

t A more complete description of the wind tunnel, shear-flow generator and tmverse 
gear may be found in Mulhearn & Luxton (1970). 
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Mean velocity measurements are made with both a Pitot tube and a single 
normal hot wire (for details, see Ahmad, Luxton & Antonia 19753). 

The mean kinematic Reynolds shear stress is obtained with a single inclined 
hot wire operated with a linearized constant-temperature anemometer system 
(DISA 55DO1, 55D15). The st'ress -uV is proportional to the difference between 
the two mean-squared values of the linearizer fluctuating voltages obtained 
before and after a 180" rotation of the wire. The stress -G can also be obtained 
with an S-wire but this is primarily used to measure w fluctuations and the 
Reynolds stresses -uW and --2)w as -uV tends to extrapolate to wall stress 
values which are lower then those found by other methods. The linearized signals 
from the X-wire are fed into a multiplying and adding circuit from which the 
instantaneous u, v (or w )  and uv (or u w )  signals are recorded on a Hewlett- 
Packard 3525A 7-channel F M  tape recorder a t  a speed of 38.1 cm s-l (the 
frequency response of the tape recorder is flat up to 5 kHz). The records are 
typically of 20 s duration. Spectra of u, v and w may be obtained by playing back 
the recorded signals through a series of bandpass filters of the DISA 55D26 
signal conditioner and recording the r.m.s. output from the 55D35 voltmeter. 

5. Mean velocity profile data 
The experimental mean velocity profiles are plotted in the form U/U, vs. 

log yL;/v, where the values of the friction velocity U, ( 3  &, where I-, is the 
kinematic wall stress) are determined by the Preston-tube method (with the 
calibration of Head & Ram 1971). These values are in close agreement with 
those obtained from the Clauser chart and the inclined-wire measurements 
near the wall. The profiles are shown in figure 3 for h = f 6 s-l respectively. 
At each value of A ,  profiles are shown for three values of x (1-37,1.63 and 2.21 m). 
The viscous-sublayer relation U/U, = yU,/v appears to be closely followed up to 
a value of yU,/v 21 10. For yU,/v > 30, the profiles conform with the logarithmic 
relat'ion 

_ -  u 1 Y u ,  - -log- +c, 
ri, K v 

with K N 0.40 and C = 5.0, the values recommended by Coles (1962) in his 
appraisal of turbulent boundary layers with small external turbulence levels. 
The region of validity of (8) appears to be narrower in the presence of an external 
shear flow than when the flow field is uniform. For h = 6 s-l, (8) is valid up to 
y t [ / v  = 120 and 250 respectively whilst with h = 0, the validity extends up to 
yUJv = 300. It should be noted however that the values of R,, defined as 
U,O/v ( tb  is the velocity at y = 8, equal to U, i- A&), are sufficiently different to 
account for the above differences in the extent of relation (8). The mean velocity 
profiles of Charnay, Comte-Bellot & Mathieu (1972) show a significant shift to 
higher values than those given by (8) (with K = 0.41 and C = 5.7) when 
T, = 4.7 %, but a straight-line portion on a semi-logarithmic plot still exists. 
K h e ,  Lisin & Waitman (1960) also observed a departure from (8) for T, > 4 yo 
but, in their case, the values of U/U, in the logarithmic region are below those 
given by (8) (with K = 0.47 and C = 5.2). 
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In  the outer region of the layer, the velocity profiles are different for different 
x since no collapse is expected when the normalizing length scale v/U7 is used. 
The increase in values of U/U, with increasing x reflects the decrease in the wall 
stress with downstream distance. In  the case of an external shear flow, the 
profiles merge into the profiles U,/U., = V,/U, f Ihl y/U7, but before the merging 
occurs a small zone exists where U is approximately constant. The extent of 
this zone is about the same when h = - 6 s-1. This region is not apparent in the 
measurements of Masuda et al. (1972) for h = k 60 s-l, but it is observed on some 
of the profiles measured by Costin (1971) for h = 15 s-1. No other writ,ers have 
published data close enough to the boundary to determine whether a plateau 
region existed in their experiments. Although we do not yet have a plausible 
explanation for the plateaux, measurements of turbulence quantities presented 
in $ 6  are consistent with such plateaux of U near the outer 'edge' of the layer. 
Tentatively one may suggest that the plateaux will probably exist a t  low h 
because of the efficient large-scale mixing and entrainment in the outer region of 
the boundary layer, which destroys the mean shear of the external flow. At 
large h however, the external shear flow may dominate and inhibit the large- 
scale mixing and entrainment in the outer part of the boundary layer, thus 
accounting for the disappearance of the plateaux. Masuda et al. (1972), as pointed 
out earlier, did not find a plateau region for h = 2 60 s-l but did find marked 
changes in the structure of the outer region of the boundary layer, which is 
consistent with the above postulate, provided their results are reliable. 

Before discussing the mean velocity profiles in the outer region of the layer in 
more detail, i t  seems appropriate here to investigate the possibility of self- 
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FIGURE 4. Velocity defect profiles for three external sheers a t  three stations. Zero external 
shear: @, 1.37 m; A, 1-03 m; V, 2-21 m. Positive external shear: 0 ,  1-37 m; A, 1.63 m; 
7 ,  2-21 m. Negative external shear: 0, 1.37 m; A. 1-63 m; V, 2-21 m. 

preservation for a turbulent boundary layer with an external uniform shear flow. 
In  the case of small A, it is reasonable to seek self-preserving solutions of the 
equations of motion for the departures of the mean velocity and Reynolds- 
stress distributions from those associated with the external uniform shear flow. 
Excluding the region of the flow in the immediate vicinity of the wall that is 
directly affected by viscosity, we seek self-preserving solutions of the fornit 

U1- u = u,f (YlSo, hsolUw9 (W1uw), 
4 - u 2  = U091(Y/So, hso/Uw, (u@/Uw), 

v; - v2 = U37,(Yl~o, hsolUw9 (Wuw), 
(T1-G = u:gl,(Y/~o, A(JolUw, (aww), 

(9) 

(10) 

- -  
- -  

where Uo and So are the velocity and length scales respectively and the functions 
f, g,, g, and g,, are presumably universal functions of y/S0, hSo/Uu, and the 

7 This approach is somewhat similar to that used by Townsend (1965, 1966), who 
postulated self-preservation of the perturbation to a boundary layer subjected to sudden 
changes in surface conditions. It should be noted here that the form of self-preservation 
proposed for the difference in ReynoIds stresses is probably only applicable to the case of 
small T,, as we are implicitly assuming that the turbulence field associated with the 
boundary layer is uncorrelated with that due to the free stream. 
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FIGURE 5 .  Velocity defect profiles for different external turbulence levels T, and for 
different external shears A. -, Clauser (1956), T, = 0*2%, h = 0; 0,  Antonia (1969), 
T, = 0.2y0, = 0;  . - * - . .  , Kline et al. (1960), T, = 6.2%, h = 0. Charnay et al. (1972): 
x,T, = 0.3yO,h = O ; - * * - - - -  ,T, = 4.7%,h = O.Masudaetal.(1972):+,Tu= 2 4 % ,  
h = -60s-1; m, T, = 3.4%, h = +6Os-’; +, T, = 3,6%, h = 0. Present results: 
V, T, = 1.6%, h = -6s-l; --- , T, = 1.5%, h = 0; A, T, = 1.3%, h = 6 s-,. 

- _  
external-flow turbulence level.? The stresses u;, v; and - do not depend on 
y in the case of a uniform shear flow. Substitution of (9) and (10) into the equation 
of motion and use of the continuity equation leads to requirements on the 
streamwise development of U, and 8, that are identical to those obtained by 
Townsend (1956, p. 231, 1966) for the corresponding situation of a turbulent 
boundary layer developing with zero pressure gradient and a uniform external 
free stream with a low turbulence level. It must be emphasized that in our case 
(UV), is only a small fraction of the wall stress (about 10 yo), so that we presume 
that we are investigating a small perturbation by the external shear flow on the 
boundary layer. A suitable choice for the velocity scale U, is U, since, in the 
inner region of the flow, (9) is consistent with the experimentally observed loga- 
rithmic relation (8). For the length scale So, we choose the integral thickness A. 

Velocity profiles are shown in figure 4 in the form (U - U,)/U, va. y/A for the 
three values of A. The agreement of the data with (9) is good and the data for 
each value of h can be represented by a single curve, shown in figure 5 for com- 
parison with other experimental data. The profiles for low free-stream turbulence 

It is of course possible that the functionsf, g,, g, and g,, also depend on other charac- 
teristics of the external shear-flow turbulence, e.g. the turbulence length scale. The limited 
experimental evidence available suggests that, at  least in the case of f, this dependence 
is likely to be negligible. 
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R,  

FIGURE 6. Turbulent shearing stress at the wall. Positive external shear (T, = 1.3 yo) : 
0, H = 1.42, x = 1.37m; 0,  H = 1.37, x = 1.63m; M, H = 1-29, m = 2.21 m. Zero 
external shear (T, = 1.5%): A, H = 1.36, x = 1.37m; 0, H = 1.35, m = 1.63m; 
7 ,  H = 1.38, x = 2.21 m. Negative external shear (T, = 1.6%): 0, H = 1.37, 
x = 1.37 m; 0, H = 1.40, x = 1.63 m; A, H = 1.46, x = 2.21 m; - , Ludwieg & 
Tillman equation. 

of Charnay et ul. (1972) and Antonia (1969) are in good agreement with Clauser’s 
(1956) profile. As the external turbulence level increases, the magnitude of 
I U -  U,l/U, decreases in the inner part of the layer. This decrease is brought 
about by the increase in U, (Kline et al. 1960; Charnay et ul. 1972) as (;;)J is 
increased. For y/A > 0.16, the defect I U -  U,l/U, now increases as T, increases 
with respect to the ‘asymptotic’ Clauser profile. It should be recalled here that 
the area under the experimental curves in figure 5 is constrained to be unity 
[equation (2)]. The present data for h = 0 (T, = 1.5 yo) are consistent with the 
trend of the data of Charnay et al. (1972). The data points of [U-Ul ( [U ,  for 
h = + 6  s-l are also consistent with this trend. For y/A > 0.3, the values for 
h = + 6 exhibit a region where U exceeds U,, which is a consequence of the 
observed plateau in U near the outer edge of the layer. Surprisingly, the data 
for h = - 6  s-l follow the Clauser curve fairly closely even though T, for 
h = - 6  s-l (1.6 yo) is slightly greater than for h = 0 (1.5 %). Masuda et al. 
(1972) concluded from their data with fairly high h ( _+ 60 s-l) that the position 
of their data on the defect plot (Ul- U)/U, us. y[A was determined uniquely by 
the turbulence level T, and that the shear did not apparently exert any addi- 
tional influence. A close examination of the data of Masuda et al. in figure 6 
reveals however that, for h = + 60 s-l, the values of 1 U -  U,l/U, near the wall 
are significantly lower than those for h = 0 and a slightly higher level of T,. 
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FIGURE 7. Relation between skin-friction coefficient C, and Reynolds number R8.. Charnay 
el al. (1972) ( A  = 0): 0, T, = 0.3%; A, T, = 2.6%; V ,  T, = 3.9%; 0, T, = 4.7%. 
Masuda el al. (1972): x , h = - 60 a-l, T, = 2.8%; *, h = + 60 s-1, T, = 3.4% ; +, 
A = 0, T,  = 3.6%. Present results: m, A = +6s-l, T, = 1.3%; A, A = O,T, = 1.5%; 
V, h = - 6 s-’, T, = 1.6 % ; 0,  Wood (1975), A = 0, T, N 0.2 %. ---, C, = ~ , ~ ( & R p ) ~ u .  

The trend of the present data and the data of Masuda et a2.i would seem to be 
more consistent with a larger increase in U. when A is positive and with a de- 
crease when h is negative. 

The plot of r ,JU&(= &,, where cf is the skin-friction coefficient) vs. R, 
(=  V,O/v) in figure 6 shows that the Ludwieg & Tillman relation does not 
adequately represent the data when there is a non-negligible external turbulence 
level. It is useful therefore to establish an empirical relation between cf, H ,  R, 
and T, for such a case. Bradshaw (1974), following Green’s (1972) analysis, 
obtained a relation for the skin-friction coefficient cf (for T, c 5 yo): 

Cf = CfO(1 +AT,), 
where cfo is the skin-friction coefficient for a non-turbulent stream at the same 
R, and A was assumed by Bradshaw to be a universal constant equal to 3.2. 
However, if A is evaluated from the experimental data (Charnay et al. 1972; 
Huffman, Zimmerman & Bennet (1972) and the present results), it is found to 
vary from 1.5 to 4.6 for 2000 < R, < 8000. The value of A obtained from figure 
12 of Charnay’s (1974) thesis is 4.4. Figure 7 shows a systematic increase in cf 

It should be pointed out that the data of Masuda et al. may have suffered from the 
problems associated with the open jet configuration in their experimental arrangement. 
Also, the shear-flow generating grid upstream from the flat plate imposes a non-uniform 
length-scale distribution in the direction of the shear flow. 
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FIUURE 8. Relation between maximum defect AU/U, and Reynolds number R,. Charnay 
et al. (1972) ( A  = 0): symbols same as for figure 6. Huffman et al. (1972) ( A  = 0);  0 ,  
T u = O . l % ;  + , T u = 3 ~ 1 % . K l i n e e t a Z . ( 1 9 6 0 ) ( h = O ) : ~ , T , = 2 ~ 2 % ; O , T u = 3 ~ 6 % ;  
*, T,, = 6.4%. Present results: symbols same as for figure 6. - , Coles (1962), A = 0, 
T, N 0.2%. 

as T, increases, at a given value of R8*. Our values of cf and those of Masuda et al. 
(1972) for h = 0 appear to agree with the trend of the data of Charnay et al., 
their position in figure 7 corresponding to the appropriate T,. A good fit to these 
data is given by the empirical relation cf = cfo(&R8.) in the range 

1000 < R p  < 8000, 

but it remains to be seen whether A continues to depend on the Reynolds number 
when the velocity defect law ceases to do so (see figure 8). It is clear from figure 
7 that the values of cf for h + 0 do not follow the same pattern as those for 
h = 0. When h > 0, cf is significantly higher than the value corresponding to 
A = 0 for the same value of T,, whilst for h < 0, cf is greatly reduced with respect 
to its h = 0 value. 

To investigate the effects of the external turbulence level, the maximum defect 
normalized with friction velocity AU/U, is plotted against R, in figure 8 for 
different turbulence levels with and without external shear. The turbulence 
level T, ranges from the negligible values considered by Coles (1962) to about 
6.4 % (Kline et al. 1960). It is observed that the effect of increasing the turbulence 
level is to decrease the strength of the ‘wake’ component and hence to increase 
the local friction coefficient a t  a fixed Reynolds number. From the log-law 
equation AUlU, is related to R, by the equation 

Figure 9 shows that the quantity AUlU, becomes quite low, being reduced to 
less than one fifth of its low turbulence value for a turbulence level of 6.4 yo. 
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0 0.1 0.2 0.3 0.4 

Y/A 

FIGURE 9. Distribution of turbulence intensities for (a)  h = 6 s-l, (b )  h = 0 and ( c )  
h = - 6 s - l .  (u2-u2)i/UT: 0, z = 1 . 3 7 m ;  A,x = 1 .63m;  V, x = 2-21m.  (v2-- .~)~/uT:  
a, z = 1.36 m ;  A ,  z = 1.63 m; V, z = 2.21 m. (w2--w~)fr /UT:  0, z = 1.37 m ;  0, 
z = 1 .63m;  0, z = 2.21 m. 

- -1 - -  
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It is found that, a t  constant R,, AU/U, is well approximated (for T, > 1 %) by 
the relation 

AU/U, = 3'56-3 

which supports Bradshaw's (1974) assumption that (n -no) cc (2/cf)* T, in the 
case of zero sheart 7~ and no being the 'wake ' strengths for a turbulent and non- 
turbulent external flow respectively. The calculated values of the boundary- 
layer parameters are presented in table 1.  

6. Turbulence data 
6.1. Reynolds normal stresses 

The measured distributions of (u",*/Uw and - Uvlr, for h = 0 compare favourably 
with the results of Charnay et al. (1972), which clearly indicate that both 2 and 
- uv increase appreciably with an increase in T, in the outer layer. 

Distributions of (u2- u:)*/U,, (v2- v2,)*/U, and (w2- w:)*/U, plotted against 
y / A  are shown in figure 9 for the present three values of A. The results seem to 
support, a t  least qualitatively, the concept of self-preservation outlined in 5 
and most of the data a t  three streamwise stations can be adequately represented 
by a single distribution.$ The distributions of (2 - zx)*/U, for the three values 
of h are replotted in figure 10 together with those of Klebanoff (1954) for 
T, N 0.2 % and those of Charnay et al. (1972) for T, = 0.3 % and 4.7 %. The 
values of Charnay et al. for T, = 0.3% seem to be rather high compared with 
those of Klebanoff (1954) (T, = 0.2 yo), which may be due to the difference in 
initial conditions between the two cases. The distribution for h = - 6 s-l is 
appreciably lower than that for h = 0 in the outer region ( y / A  > 0.15) of the 
layer whereas the distribution for h = + 6 s-l lies above that for h = 0. For 
y / A  < 0.15, the distribution for h = - 6 s-l is higher than that corresponding to 
h = 0 or h = + 6 s-l. This trend is also apparent from the distribution of 
(3- $)*/U, in figure 10. This means that with external shear, due to variation in 
the free-stream velocity U,, the outer boundary condition on the turbulent 
energy equation varies and this perturbation propagates inwards with the 
increase and decrease in 

- 
- -  - -  _ . -  

for positive and negative shear respectively. 

Charnay et al. (1972) collapsed their velocity defect profiles by plotting 

P I -  m/[~,-.(m 
as a function of y/S with a N +. There does not seem t o  be any physical justification for 
choosing U, - a(u2)t as the appropriate velocity scale. Also, the implication that the value 
of K in the log-law region varies with T, is not in agreement with the experimental results. 
Further, as Bradshaw (1974) has already commented, the choice of the length scale S is 
rather critical. 

$ Gorlin & Zrazherskii (1972) found that, in a boundary layer with different surface 
roughness conditions and different values of T,, the quantity 

- 

v = [(Z)*- (T3+]/[(Z,*- (3+] 
is alinear function ofy/6,, where 13, = 

obscured by the difficulty of interpreting S,. 

Vdy. The interpretation of this result is somewhat sop 
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FIGURE 10. Distribution of longitudinal turbulence intensities for different external tur- 
bulence levels and external shears. Charnay et al. (1972) ( A  = 0) ; A, 0.3 % ; V, 4-7 yo. 

A = -CIS-', T, = 1.5%. - , Klebanoff (1954), h = 0, T,, N 0.22%. 
Present results : - - - - , A = 0, T, = 1.5%; - * -  , A = + 6 ~ - ' ,  T, = 1.3%; --.-, 

6.2. Reynolds shear stress 

The distributions of [(uV)l - G]/T for the three values of h are shown in figure 11. 
Although the range of x is rather narrow, they tend to confirm the self-preserving 
nature of (uV-uz)()lI throughout the layer. When h > 0, the magnitude of the 
shear stress becomes negligible in that part of the outer layer characterized by 
the plateau in the mean velocity profile, and then increases (without a change in 
sign) to reach a constant value -(iZ)l appropriate to the external shear. For 
h < 0 the shear stress also becomes zero when 8U/8y = 0 but then changes its 
sign before finally attaining a constant value, equal to about one-third of the 
value of I ( U V ) ~ ~  for A > 0. As a result the distribution of [(uV)l-uV]/U~ displays 
a negative region in the outer part of the layer for h > 0 but no such region is 
observed when h < 0 (figure 11).t In  the region very near the wall (y/A < 0.05) 
the results are not appreciably affected by the external shear. The shear stress 
is however quite strongly influenced by the external shear in both the 'log' 
and the outer region of the layer. For h > 0, there is a noticeable increase in the 
values of [(uV)l - uV]/U: in relation to those for h = 0, whilst a large decrease is 
observed for h < 0. This trend is in qualitative agreement with that displayed by 
the 2- 2 and v2- v: data of figure 10 for y/A greater than about 0.15. Charnay 
et al. (1972) and Huffman et ul. (1972) have shown that increasing the turbulence 

t The distributions of Reynolds shear stress of Ahmad, Luxton & Antonia (1975a) in 
a two-dimensional turbulent wake of a cylinder immersed in a uniform shear flow are 
consistent with these trends. 

- 

- -  
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FIGURE 11. Lateral development of [ ( u ~ ) ~ - - u v ] / U ~  for three external shears at three 
stations. Positive external shear: @, 1.37 m; A ,  1.63 m; 8, 2.21 m. Zero external shear: 
0 ,  1.37 m; A, 2.63 m; V, 2-21 m. Negative external shear: 0, 1.37 m; a, 1.63 m ;  
V, 2.21 m. 

level causes the shear stress to vanish at increasingly larger y/A, According to 
Bradshaw (1974), this phenomenon may be the result of an increase in entrain- 
ment with increasing T,. The major influence of the external mean shear or the 
outer layer is probably also through the entrainment. 

6.3. Turbulent energy balance 

The terms for the production, dissipation and advection of turbulent energy 
have been calculated and are presented in this subsection, normalized with U, 
and S for all three values of A. Advection was obtained from measured 

- - -  
q 2  = 2+02+w2, 

measured U and derived @/ax, aF/ay and V = -1 (aU/ax)dy.  The dissipation 
was obtained from the isotropic relation E = 15v(au/ax)2 whilst the diffusion 
was obtained by difference. Although the assumed isotropy of the dissipation 
term makes it difficult to draw definite conclusions on the shape of the diffusion 
it is felt that a useful comparison can still be made between similarly obtained 
energy budgets for different external flow conditions. 

Zero external shear. The energy budget for h = 0 is compared with that of 
Klebanofft (1954) and Charney (1974) for various values of T, in figures 12-14 
(see figure 27 of Amhad et al. 1975b). There is a systematic decrease in the 
production for y/S < 0.7 as T, increases. For y/S > 0.7, the trend is reversed. The 
production becomes zero in the range y/S = 0.9-1.2 and there is a decrease in 

t See also Bradshaw (1966). 
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'. 

0 V 

+. -. -. --* _.- .- .-. - \. 
A 

Y P  
FIQURE 12. Production and dissipation across a boundary layer for zero external shear 
for different external turbulence levels. Charnay (1974) : 0, 0.3% ; A, 1.8 % ; v, 3.2 % ; 

, 4-7 yo. 0 ,  present results, 1.5 % ; __ , Klebanoff (1954), 0.2%. -.- 

I-' r 

YlA 
FIGURE 13. Advection across boundary layer for zero external shear for different turbuleiice 

-*-*-*--, present results, 1.5 yo ; - , Klebanoff ( 1954), 0.2 % . 
levels. Charnay (1974): -.- , 0.3%; -..-, 1.8%; _...- 3 . 2 0 1 ~ ;  _ _ _ _  , 4.7%; 

25-2 
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-2.0 I I I I I I I 1 1 
0 0-2 0.4 0.6 0.8 1 .o 1.2 1.4 1.6 

Y P  
FIGURE 14. Diffusion across boundary layer for zero external shear for different turbulence 

levels. Symbols same as for figure 13. 

the dissipation for y/6 < 0.25 and a systematic increase for y/6 > 0.25 as T, 
increases. Outside the boundary layer, the dissipation is approximately constant. 
Apart from the dissipation values calculated close to the wall, the present results 
for production and dissipation are in reasonably close agreement with those of 
Charnay (1974) for T, = 1.8 yo. In  figure 13 it is clear that the gain by advection 
increases with increasing T,. For all turbulence levels, advection tends to increase 
up to y/6 = 0.5 and then decreases towards the edge of the boundary layer. In  
the external flow there is an increase in advection till it  becomes constant and, 
as expected, balances the constant dissipation since both the diffusion and pro- 
duction must be zero in this region. The failure of the diffusion? results in figure 
14 to integrate to zero across the layer is partly due to the assumed isotropy of 
dissipation and partly caused by inaccuracies in the calculation of advection.1 
Figure 14 shows that the turbulent energy diffusion across the boundary layer 
extends to larger distances from the wall as T, increases. At y/S = 1.0, the present 
advection and diffusion (figures 13 and 14) both indicate a gain in energy which 
must offset the loss by dissipation as the production is nearly zero. The energy 
balances for the present data for T, = 1.5 % (figure 15) and for Charnay’s 

t In Charnay’s (1974) data, the part of the diffusion due to pressure fluctuations was 
obtained by difference as the diffusion by qzv as measured. However, Charnay’s diffusion 
curves seem to be incorrect as they do not close his energy budget. In figure 26 of Ahmad 
et al. (19753), Charnay’s diffusion data have been derived from closure of his budget. 

$ Note for instance the large discrepancy between the advection as obtained by 
Charnay (T, = 0.3 %) and that of Klebanoff, for a comparable turbulence level. 

- 



Turbulent boundary layer with external shear flow 389 

20 r- 7 2.0 

FIGURE 15. Energy balance across boundary layer for zero external shear. 
-, production ; - a  - , dissipation; - - - - , advection; ---, diffusion. 

(1974) data for Tu = 3.2 yo show that the details of the balance near the outer 
edge are quite different from those when Tu is negligible. In  particular, advection 
has the same sign as diffusion and dissipation is therefore large. This emphasizes 
that the external turbulence level is a significant parameter in the mechanics of 
turbulent energy transport. 

6 s-1). The energy budgets for h = If: 6 s-l are 
shown in figures 16 and 17. There is an increase in the production term for 
y/& < 0.4 compared with the case h = 0. For y/8 > 0.4, a decrease in the produc- 
tion is observed relative to the h = 0 case. There is also a corresponding increase 
in the inner region and a decrease in the outer region of the dissipation. The 
production becomes zero in the constant-velocity region and then increases 
outside the boundary layer before assuming a constant value. This constant 
production for h = - 6 s-1 is about one-fXth of that for h = + 6 s-l as I (uV)ll 
and 8/U: both are smaller for h < 0. In  the case h > 0 (flgure 20) the dissipation 
first decreases, then increases and ultimately becomes constant, while for nega- 
tive shear (figure 17), the dissipation gradually decreases and attains a constant 
value without becoming zero. Diffusion becomes zero a t  y/& = 1.25, 1.32 and 
1.42 for A = - 6 s-1, 6 s-l and 0 respectively (figures 17, 16 and 15), indicating 
that the extent of diffusion of turbulent energy is slightly reduced by the pre- 
sence of an external shear. Up to y/& = 0.6, the diffusion is not strongly affected 
by the shear but there is a decrease in the gain by diffusion for y/8 > 0.6 when 

Non-zero external shear ( A  = 
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Y P  
FIGURE 16. Energy balance across boundary layer for positive external shear. 

Symbols same as for figure 15. 

/ I  I I I I I I I 

0 /0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

Y P  

3.0 

I .5 

1 .o 

0.5 

0 

-0.5 

- 1.0 

-1.5 

FIGURE 17. Energy balance across boundary layer for negative external shear. 
Symbols same a.a for figure 15. 
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Y P  
FIGURE 18. Longitudinal integral length scale across boundary layer. 

0,  h = 0, Antonia (1969). Present results: 0, h = 0 ;  a, h = + G  s-l; v ,  h = - 68-1. 

t,he external shear is applied and this decrease is more pronounced for h = + 6 s-1 
than for A = - 6 s-1. The advection is also not strongly affected for y/S < 0.6. 
There is a gain by advection in the region y/6 > 0.6 in zero shear (figure 15) and 
a slight loss and gain with positive and negative shear (figures 16 and 17) respec- 
tively for y/S > 0.85. A detailed energy budget for large values of ylS (given in 
Ahmad et al. 1975b) provides good support for the homogeneity of the external 
shear-flow turbulence in that the diffusion term, obtained by difference, is zero. 

6.4. Turbulence length scales 

The integral length scales presented in this subsection are obtained from the 
one-dimensional spectral density Q ~ U ,  viz. L = n$,(u = O)l22. All the measured 
spectra exhibit a plateau in 4, a t  the lowest observed frequencies (down to 
1 Hz), so that L seems to be unambiguously defined in all cases. The length 
scales for A = ? 6 s-I are in good agreement outside the boundary layer and are 
approximately three times the value for h = 0. This difference is probably a 
result of different experimental initial conditions. Distributions of L/6 vs. y/S 
are shown in figure 18. The values of L/6 obtained by Antonia (1969) for 
T, N 0.05 %, by Johnson (1959) for T, 2: 0.07 % and by Fulachier (1972) for 
T, !x 0.12 % are considerably higher than the present values for y/6 < 0.5, 
which indicates that the external length scale exerts an appreciable influence on L. 
It is difficult to assess with confidence any possible further effect due to the 
external shear in view of the uncertainty in the choice of 6, and the different 
length scales in the present three external conditions. However it is possible that 
the combination of a larger external length scale and a Reynolds shear stress 
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Y P  
FIGURE 19. Dissipation length scale across boundary layer for different external turbulence 
levels. Charnay et al. (1972) ( A  = 0) : 0, 0.3 % ; V, 3-2 % ; 0, 4.7 %. 0 ,  Klebanoff (1954), 
0.2% (h = 0). Present results: Q, 1.5% (h = 0); A, 1.3% (h  = +6s-1); v, 1.6% 
( A =  - 6  8-1). 

in the outer flow of opposite sign to that in the boundary layer may lead to a 
reduction in the correlation of u (and possibly other components) in the boundary 
layer. 

Another length scale that may be thought to characterize the energy-containing 
eddies is the dissipation length scale Le7 defmed as L, = I -ZEl%/e. Present dis- 
tributions of L, are compared with those of Klebanoff (1954) and Charnay et al. 
(1973). In  figure 19. The straight line given by L,/S = 0.4y/8 lies we11 below the 
data, which suggests that the mixing-length concept becomes less tenable as 
the external turbulence level increases. The breakdown of this concept is con- 
sistent with the previously noted increase in dissipation and reduced production 
as T, increases. Outside the layer, L,/8 becomes zero at 1-48 for A = 0, while 
for h = f 6 s-l i t  increases before becoming constant, the value for h = + 6 s-l 
being about 5.5 times that for h = - 6 s-l. The large discrepancy between L, 
and L seems to be due to the higher stresses and lower dissipation values for 
h = + 6 s-l than for A = - 6 s-l. For all three values of h considered here, the 
length scale (S)%/s is nearly 4.5L in the external flow, which is in agreement 
with grid turbulence data and the results of Charnay (1974). However, the 
present values of L in the boundary layer are higher than those inferred from 
Charnay’s data for the u-component transverse integral length scale (assumed 
equal to +L) for the same T,. In  the present external flow ( A  = 0) ,  the value of 
LIB is ahout 0.5, which is twice that in Charnay’s flow. Charnay’s data clearly 
indicate that, in the inner layer, the increase in L/S is larger with an increase in 
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FIGURE 20. Lateral distribution of Kolmogorov length scale. 0, z = 1-63 m, h = - 6 8-l; 

A,% = 1-63m,h = 0; V , z  = 1 - 6 3 q A  = +6s-'; U,Z = 2.21m,h = +6s-'. 

the external length scale for the same T, than with an increase in T, for the same 
external scale. Figure I9 shows that LJS is not significantly affected by T, 
(as suggested by Huffman et al. 1972) or A. Hence, as noted by Bradshaw (1974), 
the effects of free-stream turbulence are expected to depend more critically on 
the magnitude of the length scale than on T,. 

The Kolmogorov length scale lK = (v3/e)),  normalized with 6, is plotted 
against y/S in figure 20. Outside the layer, lK is greater for h = rf: 6 s-l than for 
h = 0, which is consistent with the smaller values of dissipation when h = -+- 6 s-l. 
The main feature of figure 20 is that the distributions of 1, for h = -+- 6 s-l 
have the same qualitative trend as those for L or L,. For h = 0 however, the 
peak in L or L, is no longer apparent in the Z, distribution. Hence, as a result of 
the dissipation being nearly zero in the interaction region, 1, seems to mirror 
the behaviour of L better than that of L,. 

7. Summary of results and concluding comments 
Measurements in the external uniform turbulent shear flow with h = + 6 s-l 

are found to be in agreement with the more detailed investigation of Mulhearn 
(1971). In particular, the turbulence length scales are found to increase linearly 
with x and all the Reynolds stresses become approximately constant a t  

xhlU, -2.4 



394 Q. A. Ahmad, R. E .  Luxton and R. A.  Antonia 

and begin to increase when xhlU, > 4. The rate of increase with x of the longitu- 
dinal normal stress is significantly higher than that for the other stresses, which 
seems to point to the ineffective role of the pressure fluctuations in redistributing 
the turbulent energy among the various components. Measurements in the 
boundary layer are made over the relatively small streamwise region where the 
external turbulence field was quasi-homogeneous. 

For the case of no external shear, the measurements are essentially in agree- 
ment with those available in the literature. The skin friction cf is increased when 
compared with that in a layer with T, 21 0 a t  the same value of R,. Distributions 
of mean velocity, Reynolds stress and energy balance in the inner part of the 
layer are essentially identical with those for T, = 0. However the turbulence 
length scale in the inner layer is found to be lower than that measured for 
T, = 0. This result is different from that of Charnay et al. (1972), who find an 
increase in the transverse length scale when either T, or the external length 
scale is increased. The present distribution of L/6 also overshoots significantly 
its free-stream value near y = 6. 

With an external positive or negative shear, the distributions of mean velocity, 
Reynolds stresses and the energy budget in the inner layer are the same as for 
h = 0. Except near the edge of the layer, the shape of the velocity defect distri- 
bution is similar to that for h = 0 a t  the same value of T,. The almost negligible 
effect of h relative to that of T, on the ‘wake’ component of the mean velocity 
profile is more pronounced in the data of Masuda et al. (1972), who used larger 
values of h (=  f 60 s-l). At the edge of the layer, there is a small region where 
the velocity gradient is zero, for both negative and positive h. This rather un- 
expected (at least for h > 0)  result is supported by the shear-stress distribution, 
which is approximately zero in this region before increasing to its constant 
external-flow value. 

Distributions of the differences between the local Reynolds stresses and the 
corresponding values in the external shear flow tend to show, when plotted VS. 

y/A, reasonable similarity for the small range of x investigated here. This simi- 
larity is better when h > 0,  when the advection term in the outer stream is 
negligible, than when h < 0, when the advection is almost equal to the dissipa- 
tion in the external flow. For h > 0, the distributions of Reynolds stresses in the 
outer part of the layer are larger than in the case h = 0, whilst for h < 0 they 
are significantly smaller. There does not appear to be an effect of A, additional 
to that of T,, on the integral length scale in the inner part of the layer. 

In  his survey paper, Bradshaw (1974) concluded that ‘the detailed mechanism 
of free-stream turbulence effects is not understood, even qualitatively ’. The 
addition of a shear to the external-flow turbulence is not likely to make our 
understanding better. Although the present measurements tend to indicate 
that the extra complications introduced by the external shear are probably small, 
there is a definite need for further experiments, particularly with higher values 
of A. Also, a systematic study of the influence of the external-flow length scale 
on the turbulence structure of the boundary layer would be of particular interest. 
A detailed study of the interaction region between the boundary layer and the 
external shear flow would best be carried out with the use of a conditional 
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sampling technique (e.g. Charnay 1974) and the introduction of a passive 
scalar contaminant in one of the flows. Fabris (1974) has used this method to 
study the interaction between two wakes, while Dean (1  974) has applied it to 
investigate the interaction of shear layers in a duct flow. Comparison between 
these various interactions would certainly be useful. 

This work was supported by the Australian Research Grants Committee and 
the Australian Institute of Nuclear Science and Engineering. 
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